报告人简介:
张吉,现为澳大利亚南昆士兰大学计算机科学终身教授职位,博士生导师。曾任南昆士兰大学信息技术中心首席研究顾问, IEEE高级会员,ACM会员,澳大利亚奋进学者,昆士兰学者,加拿大Killam学者,第3届世界智能大会特邀专家,美国密歇根州立大学、新加坡南洋理工大学和日本筑波大学访问客座教授。张吉教授获2011年度南昆士兰大学杰出研究奖和澳大利亚奋进奖。张吉教授的主要研究方向为大数据分析, 数据挖掘, 信息隐私保护及安全,计算智能等,张吉教授已在国际主要期刊和国际会议中发表研究论文150余篇,其中包括国际重要的学术期刊和国际会议如TKDD, TDSC, Information Sciences, KAIS, PRL, WWW Journal, JIIS, Bioinformatics and top international conferences such as VLDB, ACM CIKM, ACM SIGKDD, IEEE ICDE, IEEE ICDM, WWW Conference, PAKDD, DASFAA 和DEXA等,并撰写个人专著1部及专著论文7篇。
报告简介:
In this talk, I will present some of our recent work on outlier detection. I will first talk about SPOT, a technique for detecting outliers from large high-dimensional data streams. Computational Intelligence method based on Genetic Algorithm is developed to achieve efficient high-dimensional subspace search. Innovative fast convergence technique is also proposed to significant speed up the detection process. I will then introduce DISTROD, a technique for detecting outliers from multiple large distributed databases. It is able to effectively detect the so-called global outliers from distributed databases that are consistent with those produced by the centralized detection paradigm.