报告题目:Constrained Subspace Classifier For High Dimensional Datasets
Abstract: In this work, we propose a new binary classification method called constrained subspace classifier (CSC) for high dimensional datasets. CSC improves on an earlier proposed classification method called local subspace classifier (LSC) by accounting for the relative angle between subspaces while approximating the classes with individual subspaces. CSC is formulated as an optimization problem and can be solved by an efficient alternating optimization technique. Classification performance is tested in publicly available datasets. The improvement in classification accuracy over LSC shows the importance of considering the relative angle between the subspaces while approximating the classes. Additionally, CSC appears to be a robust classifier, compared to traditional two-step methods that perform feature selection and classification in two distinct steps.
Panos M. Pardalos教授简介
Panos M. Pardalos系美国佛罗里达大学工业与系统工程系杰出教授,希腊雅典大学学士,美国克拉克森大学硕士,明尼苏达大学博士。在国际上多个组织机构任职,如运筹学与管理科学学会会士(Fellow of INFORMS),美国科学促进会会士(Fellow of AAAS),国际全局优化协会主席,乌克兰等国家科学院院士,并于2014年9月26日受聘为我校“海外名师”。Panos M. Pardalos教授长期从事运筹与优化领域的研究,是全局优化领域的先驱者,其研究领域包含网络设计问题, 通讯优化, 电子商务, 数据挖掘, 生物医学应用, 以及大规模计算。发表国际期刊论文300余篇,专著18部,其目前的Google学术H值达到80.在运筹与优化领域,Panos M. Pardalos获奖无数,近两年内获得欧洲运筹协会金奖和卡拉西奥多里奖。此外,Panos M. Pardalos担任过多个国际期刊的主编和副主编1993-2013年担任Journal of Global Optimization主编,2007-2013年担任Optimization Letters主编并是该期刊的创刊人,2010年-至今担任Energy Systems主编;同时PanosM.Pardalos教授目前还担任优化理论和应用等10多个SCI期刊的副主编或编辑。